12 research outputs found

    Neurohormonal Regulation of IKs in Heart Failure: Implications for Ventricular Arrhythmogenesis and Sudden Cardiac Death

    Get PDF
    Heart failure (HF) results in sustained alterations in neurohormonal signaling, including enhanced signaling through the sympathetic nervous system and renin-angiotensin-aldosterone system pathways. While enhanced sympathetic nervous system and renin-angiotensin-aldosterone system activity initially help compensate for the failing myocardium, sustained signaling through these pathways ultimately contributes to HF pathophysiology. HF remains a leading cause of mortality, with arrhythmogenic sudden cardiac death comprising a common mechanism of HF-related death. The propensity for arrhythmia development in HF occurs secondary to cardiac electrical remodeling that involves pathological regulation of ventricular ion channels, including the slow component of the delayed rectifier potassium current, that contribute to action potential duration prolongation. To elucidate a mechanistic explanation for how HF-mediated electrical remodeling predisposes to arrhythmia development, a multitude of investigations have investigated the specific regulatory effects of HF-associated stimuli, including enhanced sympathetic nervous system and renin-angiotensin-aldosterone system signaling, on the slow component of the delayed rectifier potassium current. The objective of this review is to summarize the current knowledge related to the regulation of the slow component of the delayed rectifier potassium current in response to HF-associated stimuli, including the intracellular pathways involved and the specific regulatory mechanisms

    Prevalence and types of inconsistencies in clinical pharmacogenetic recommendations among major U.S. sources

    Get PDF
    Clinical implementation of pharmacogenomics (PGx) is slow. Previous studies have identified some inconsistencies among clinical PGx recommendations, but the prevalence and types of inconsistencies have not been comprehensively analyzed among major PGx guidance sources in the U.S. PGx recommendations from the Clinical Pharmacogenetics Implementation Consortium, U.S. Food and Drug Administration drug labels, and major U.S. professional medical organizations were analyzed through May 24, 2019. Inconsistencies were analyzed within the following elements: recommendation category; whether routine screening was recommended; and the specific biomarkers, variants, and patient groups involved. We identified 606 total clinical PGx recommendations, which contained 267 unique drugs. Composite inconsistencies occurred in 48.1% of clinical PGx recommendations overall, and in 93.3% of recommendations from three sources. Inconsistencies occurred in the recommendation category (29.8%), the patient group (35.4%), and routine screening (15.2%). In conclusion, almost one-half of clinical PGx recommendations from prominent U.S. guidance sources contain inconsistencies, which can potentially slow clinical implementation

    Calcium/Calmodulin-Dependent Protein Kinase II Regulation of IKs during Sustained Beta-Adrenergic Receptor Stimulation

    Get PDF
    Background Sustained β-adrenergic receptor (β-AR) stimulation causes pathophysiological changes during heart failure (HF), including inhibition of the slow component of the delayed rectifier potassium current (IKs). Aberrant calcium handling, including increased activation of calcium/calmodulin-dependent protein kinase II (CaMKII), contributes to arrhythmia development during HF. Objective The purpose of this study was to investigate CaMKII regulation of KCNQ1 (pore-forming subunit of IKs) during sustained β-AR stimulation and associated functional implications on IKs. Methods KCNQ1 phosphorylation was assessed using LCMS/MS after sustained β-AR stimulation with isoproterenol (ISO). Peptide fragments corresponding to KCNQ1 residues were synthesized to identify CaMKII phosphorylation at the identified sites. Dephosphorylated (alanine) and phosphorylated (aspartic acid) mimics were introduced at identified residues. Whole-cell, voltage-clamp experiments were performed in human endothelial kidney 293 cells coexpressing wild-type or mutant KCNQ1 and KCNE1 (auxiliary subunit) during ISO treatment or lentiviral δCaMKII overexpression. Results Novel KCNQ1 carboxy-terminal sites were identified with enhanced phosphorylation during sustained β-AR stimulation at T482 and S484. S484 peptides demonstrated the strongest δCaMKII phosphorylation. Sustained β-AR stimulation reduced IKs activation (P = .02 vs control) similar to the phosphorylated mimic (P = .62 vs sustained β-AR). Individual phosphorylated mimics at S484 (P = .04) but not at T482 (P = .17) reduced IKs function. Treatment with CN21 (CaMKII inhibitor) reversed the reductions in IKs vs CN21-Alanine control (P < .01). δCaMKII overexpression reduced IKs similar to ISO treatment in wild type (P < .01) but not in the dephosphorylated S484 mimic (P = .99). Conclusion CaMKII regulates KCNQ1 at S484 during sustained β-AR stimulation to inhibit IKs. The ability of CaMKII to inhibit IKs may contribute to arrhythmogenicity during HF

    Efavirenz inhibits the human ether-a-go-go related current (hERG) and induces QT interval prolongation in CYP2B6*6*6 allele carriers

    Get PDF
    Background Efavirenz (EFV) has been associated with torsade de pointes despite marginal QT interval lengthening. Since EFV is metabolized by the cytochrome P450 (CYP) 2B6 enzyme, we hypothesized that EFV would lengthen the rate-corrected QT (QTcF) interval in carriers of the CYP2B6*6 decreased functional allele. Objective The primary objective of this study was to evaluate EFV-associated QT interval changes with regard to CYP2B6 genotype and to explore mechanisms of QT interval lengthening. Methods EFV was administered to healthy volunteers (n=57) as a single 600 mg dose followed by multiple doses to steady-state. Subjects were genotyped for known CYP2B6 alleles and ECGs and EFV plasma concentrations were obtained serially. Whole-cell, voltage-clamp experiments were performed on cells stably expressing hERG and exposed to EFV in the presence and absence of CYP2B6 expression. Results EFV demonstrated a gene-dose effect and exceeded the FDA criteria for QTcF interval prolongation in CYP2B6*6/*6 carriers. The largest mean time-matched differences ΔΔQTcF were observed at 6 hrs (14 ms; 95% CI [1; 27]), 12 hrs (18 ms; 95% CI [−4; 40] and 18 hrs (6 ms; 95% CI [−1; 14]) in the CYP2B6*6/*6 genotype. EFV concentrations exceeding 0.4 µg/mL significantly inhibited outward hERG tail currents (P<0.05). Conclusions This study demonstrates that homozygous carriers of CYP2B6*6 allele may be at increased risk for EFV-induced QTcF interval prolongation via inhibition of hERG

    Life-Threatening Docetaxel Toxicity in a Patient With Reduced-Function CYP3A Variants: A Case Report.

    Get PDF
    Docetaxel therapy occasionally causes severe and life-threatening toxicities. Some docetaxel toxicities are related to exposure, and inter-individual variability in exposure has been described based on genetic variation and drug-drug interactions that impact docetaxel clearance. Cytochrome P450 3A4 (CYP3A4) and CYP3A5 metabolize docetaxel into inactive metabolites, and this is the primary mode of docetaxel clearance. Supporting their role in these toxicities, increased docetaxel toxicities have been found in patients with reduced- or loss-of-function variants in CYP3A4 and CYP3A5. However, since these variants in CYP3A4 are rare, little is known about the safety of docetaxel in patients who are homozygous for the reduced-function CYP3A4 variants. Here we present a case of life-threatening (grade 4) pneumonitis, dyspnea, and neutropenia resulting from a single dose of docetaxel. This patient was (1) homozygous for CYP3A4*22, which causes reduced expression and is associated with increased docetaxel-related adverse events, (2) heterozygous for CYP3A4*3, a rare reduced-function missense variant, and (3) homozygous for CYP3A5*3, a common loss of function splicing defect that has been associated with increased docetaxel exposure and adverse events. The patient also carried functional variants in other genes involved in docetaxel pharmacokinetics that may have increased his risk of toxicity. We identified one additional CYP3A4*22 homozygote that received docetaxel in our research cohort, and present this case of severe hematological toxicity. Furthermore, the one other CYP3A4*22 homozygous patient we identified from the literature died from docetaxel toxicity. This case report provides further evidence for the need to better understand the impact of germline CYP3A variants in severe docetaxel toxicity and supports using caution when treating patients with docetaxel who have genetic variants resulting in CYP3A poor metabolizer phenotypes

    Clinical Opportunities for Germline Pharmacogenetics and Management of Drug-Drug Interactions in Patients With Advanced Solid Cancers.

    Get PDF
    PURPOSE: Precision medicine approaches, including germline pharmacogenetics (PGx) and management of drug-drug interactions (DDIs), are likely to benefit patients with advanced cancer who are frequently prescribed multiple concomitant medications to treat cancer and associated conditions. Our objective was to assess the potential opportunities for PGx and DDI management within a cohort of adults with advanced cancer. METHODS: Medication data were collected from the electronic health records for 481 subjects since their first cancer diagnosis. All subjects were genotyped for variants with clinically actionable recommendations in Clinical Pharmacogenetics Implementation Consortium guidelines for 13 pharmacogenes. DDIs were defined as concomitant prescription of strong inhibitors or inducers with sensitive substrates of the same drug-metabolizing enzyme and were assessed for six major cytochrome P450 (CYP) enzymes. RESULTS: Approximately 60% of subjects were prescribed at least one medication with Clinical Pharmacogenetics Implementation Consortium recommendations, and approximately 14% of subjects had an instance for actionable PGx, defined as a prescription for a drug in a subject with an actionable genotype. The overall subject-level prevalence of DDIs and serious DDIs were 50.3% and 34.8%, respectively. Serious DDIs were most common for CYP3A, CYP2D6, and CYP2C19, occurring in 24.9%, 16.8%, and 11.7% of subjects, respectively. When assessing PGx and DDIs together, approximately 40% of subjects had at least one opportunity for a precision medicine-based intervention and approximately 98% of subjects had an actionable phenotype for at least one CYP enzyme. CONCLUSION: Our findings demonstrate numerous clinical opportunities for germline PGx and DDI management in adults with advanced cancer

    Calcium/Calmodulin-Dependent Protein Kinase II Regulation of the Slow Delayed Rectifier Potassium Current, I(ks), During Sustained Beta-Adrenergic Receptor Stimulation

    No full text
    Background: Sustained elevations in catecholaminergic signaling, mediated primarily through β-adrenergic receptor (β-AR) stimulation, are a hallmark neurohormonal alteration in heart failure (HF) that contribute to pathophysiologic cardiac remodeling. An important pathophysiological change during sustained β-AR stimulation is functional inhibition of the slow delayed rectifier potassium current, IKs, which has been demonstrated to prolong action potential duration (APD) and increase ventricular arrhythmogenesis in HF. Though functional inhibition of IKs has been consistently reproduced in cellular, animal, and limited human studies of HF, the mechanisms that mediate IKs inhibition during HF remain poorly understood. In addition, HF results in aberrant calcium handling that is known to contribute to the disease. HF has been demonstrated to increase the expression and function of calcium/calmodulin-dependent protein kinase II (CaMKII), a key regulator of calcium homeostasis and excitation-contraction coupling in cardiomyocytes. Enhanced CaMKII signaling has been consistently demonstrated to contribute to increased arrhythmogenesis in a number of cardiac diseases, including HF. CaMKII is a known pathological regulator of many cardiac ion channels resulting in APD prolongation and the development of arrhythmias. Objective: This investigation aims to assesses the potential for CaMKII regulation of KCNQ1 (pore-forming subunit of IKs) during sustained β-AR stimulation and to characterize the potential functional implications on IKs. Furthermore, this investigation seeks to elucidate the mechanism underlying CaMKII-mediated IKs inhibition during sustained β-AR stimulation. Methods: Phosphorylation of KCNQ1 was assessed using a tandem liquid chromatography- mass spectrometry/ mass spectrometry (LCMS/MS) approach during sustained β-AR stimulation via treatment with 100 nM isoproterenol (ISO) for 4-24 hours and during co-expression with KCNE1. Whole-cell, voltage-clamp patch clamp electrophysiology experiments were performed in HEK 293 cells transiently co-expressing wild-type (WT) or mutant KCNQ1 (mutations conferring mimics of dephosphorylation and phosphorylation were introduced at phosphorylation sites identified by LCMS/MS) and KCNE1 (auxiliary subunit) during ISO treatment, treatment with CaMKII or protein kinase A (PKA) inhibitors, or during lentiviral δCaMKII overexpression. A robotic peptide synthesizer was used to create fifteen residue peptide fragments on a nitrocellulose membrane corresponding to KCNQ1 intracellular domains and the KCNQ1 residues identified via LCMS/MS; membranes were incubated with activated CaMKII or PKA in the presence of radiolabeled ATP to identify potential sites of phosphorylation. Bimolecular fluorescence complementation (BiFC) experiments were performed in HEK 293 cells to assess the impact of CaMKII-mediated KCNQ1 phosphorylation on the interaction of KCNQ1 and KCNE1 subunits. Protein immunoblot experiments were performed to (1) assess CaMKII activation during ISO treatment and (2) to assess plasma membrane expression of KCNQ1 and KCNE1 subunits with mimics of differential KCNQ1 phosphorylation following a membrane protein biotinylation procedure. Results: In Aim 1, we investigated the regulation of the KCNQ1 carboxyl terminus during sustained β-AR stimulation and assessed the associated functional implications on IKs. An LCMS/MS approach identified five novel KCNQ1 carboxyl terminal sites that demonstrated basal phosphorylation, with T482 and S484 having enhanced phosphorylation during treatment with 100 nM ISO for 24 hours (p\u3c0.01 at both sites). Using patch clamp electrophysiology, we demonstrated that treatment with 100 nM ISO for 12-24 hours reduced IKs current density (p=0.01) and produced a depolarizing shift in the voltage dependence of activation (p\u3c0.01) relative to vehicle

    Association of Regulatory Genetic Variants for Protein Kinase Cα with Mortality and Drug Efficacy in Patients with Heart Failure

    No full text
    PURPOSE: Protein kinase C alpha (gene: PRKCA) is a key regulator of cardiac contractility. Two genetic variants have recently been discovered to regulate PRKCA expression in failing human heart tissue (rs9909004 [T → C] and rs9303504 [C → G]). The association of those variants with clinical outcomes in patients with heart failure (HF), and their interaction with HF drug efficacy, is unknown. METHODS: Patients with HF in a prospective registry starting in 2007 were genotyped by whole genome array (n = 951). The primary outcome was all-cause mortality. Cox proportional hazards models adjusted for established clinical risk factors and genomic ancestry tested the independent association of rs9909004 or rs9303504 and the variant interactions with cornerstone HF pharmacotherapies (beta-blockers or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers) in additive genetic models. RESULTS: The minor allele of rs9909004, but not of rs9303504, was independently associated with a decreased risk for all-cause mortality: adjusted HR = 0.81 (95% CI = 0.67-0.98), p = 0.032. The variants did not significantly interact with mortality benefit associated with cornerstone HF pharmacotherapies (p \u3e 0.1 for all). CONCLUSIONS: A recently discovered cardiac-specific regulatory variant for PRKCA (rs9909004) was independently associated with a decreased risk for all-cause mortality in patients with HF. The variant did not interact with mortality benefit associated with cornerstone HF pharmacotherapies

    Efavirenz inhibits the human ether-a-go-go related current (hERG) and induces QT interval prolongation in CYP2B6*6*6 allele carriers

    No full text
    Background Efavirenz (EFV) has been associated with torsade de pointes despite marginal QT interval lengthening. Since EFV is metabolized by the cytochrome P450 (CYP) 2B6 enzyme, we hypothesized that EFV would lengthen the rate-corrected QT (QTcF) interval in carriers of the CYP2B6*6 decreased functional allele. Objective The primary objective of this study was to evaluate EFV-associated QT interval changes with regard to CYP2B6 genotype and to explore mechanisms of QT interval lengthening. Methods EFV was administered to healthy volunteers (n=57) as a single 600 mg dose followed by multiple doses to steady-state. Subjects were genotyped for known CYP2B6 alleles and ECGs and EFV plasma concentrations were obtained serially. Whole-cell, voltage-clamp experiments were performed on cells stably expressing hERG and exposed to EFV in the presence and absence of CYP2B6 expression. Results EFV demonstrated a gene-dose effect and exceeded the FDA criteria for QTcF interval prolongation in CYP2B6*6/*6 carriers. The largest mean time-matched differences ΔΔQTcF were observed at 6 hrs (14 ms; 95% CI [1; 27]), 12 hrs (18 ms; 95% CI [−4; 40] and 18 hrs (6 ms; 95% CI [−1; 14]) in the CYP2B6*6/*6 genotype. EFV concentrations exceeding 0.4 µg/mL significantly inhibited outward hERG tail currents (P<0.05). Conclusions This study demonstrates that homozygous carriers of CYP2B6*6 allele may be at increased risk for EFV-induced QTcF interval prolongation via inhibition of hERG
    corecore